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SUMMARY

The e�ect of location of the lateral boundaries, of the computational domain, on the critical parameters
for the instability of the �ow past a circular cylinder is investigated. Linear stability analysis of the
governing equations for incompressible �ows is carried out via a stabilized �nite element method
to predict the primary instability of the wake. The generalized eigenvalue problem resulting from the
�nite element discretization of the equations is solved using a subspace iteration method to get the most
unstable eigenmode. Computations are carried out for a large range of blockage, 0:0056D=H6 0:125,
where D is the diameter of the cylinder and H is the lateral width of the domain. A non-monotonic
variation of the critical Re with the blockage is observed. It is found that as the blockage increases,
the critical Re for the onset of the instability �rst decreases and then increases. However, a monotonic
increase in the non-dimensional shedding frequency at the onset of instability, with increase in blockage,
is observed. The increased blockage damps out the low-frequency modes giving way to higher frequency
modes. The blockage is found to play an important role in the scatter in the data for the non-dimensional
vortex shedding frequency at the onset of the instability, from various researchers in the past. Copyright
? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that the steady �ow past a circular cylinder looses stability beyond Re∼ 47.
There have been several attempts, both numerical and experimental, to estimate the critical
Reynolds number (Rec) and the non-dimensional vortex shedding frequency (Stc) at Rec.
Table I lists these values reported by various researchers. For numerical studies, the method
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Table I. Uniform �ow past a circular cylinder: summary of the critical parameters at the onset of wake
instability, from various studies.

Grid Domain size
Researcher(s) Rec Stc Method points L×H
Kovasznay [1] 40 Experiments H =1250D
Roshko [2] 40 0.12 Experiments H =1250D
Berger [3] 50 0.12 Experiments
Coutanceau and Bouard [4] 34–43 — Experiments
Williamson [5] 47.9 0.122 Experiments H =150D
Norberg [6, 7] 47.4 (±0:5) 0.1177 Experiments H =6250D
Gresho [8] 50 0.14 FEM 1825
Jackson [9] 46.184 0.13804 FEM with II 20D× 10D
Zebib [10] 39–43 0.11–0.13 Eigenvalue anal.
Ding and Kawahara [11] 46.389 0.12619 FEM AR 9870 36D× 16D
Morzynski and Thiele [12] 46.270 0.13451 FDM with NR 3200
Chen et al. [13] 47.9 0.138 FEM with SI
Morzynski et al. [14] 47 0.1320 FEM with SI 15 838 20D× 10D
Present calculation 47.336 0.1168 FEM with SI 34 324 100D× 200D
The abbreviations used in the table are: FEM, �nite element method; II, inverse iteration method; FDM, �nite
di�erence method; AR, Arnoldi’s method; SI, subspace iteration method.

used and domain size are also listed. A relatively large scatter in the data, especially for Stc,
is observed.
Another issue, related to vortex shedding, that has received some attention in the past is the

e�ect of the location of lateral boundaries on the critical parameters. Shair et al. [15] have
pointed out that although the e�ect of con�ning walls is of a secondary nature in the study of
�ow past a solid body, the stability of the wake is drastically a�ected by them. They observed
a very rapid increase in Rec with increase in blockage, D=H . Here, H is the lateral width
of the domain and D is the diameter of the cylinder. Coutanceau and Bouard [4] found that
Rec increases linearly with increase in blockage. They predicted Rec ∼ 34 for the unbounded
�ow. Chen et al. [13] carried out calculations for D=H in the range of 0.1–0.7. They reported
results from two sets of computations. The �rst case, for which their results are shown in
Table I, corresponds to the simulation of unbounded �ow. The second one is the �ow past a
cylinder con�ned in a channel. A parabolic velocity pro�le was speci�ed at the channel inlet
while a no-slip condition was imposed on the velocity at the channel walls. For this case,
with very narrow channel, they observed a non-monotonic behaviour in the variation of Rec
with blockage. Sahin and Owens [16] con�rmed the �ndings of Chen et al. [13] and observed
a similar non-monotonic behaviour for high blockage. For D=H =0:64 they reported Rec and
Stc as high as 284.56 and 0.4351, respectively. They also found that, for very high blockage,
multiple steady states are possible.
The objective of the present work is to investigate the e�ect of blockage on the critical

parameters at the onset of vortex shedding for modelling the uncon�ned �ow past a cylinder.
To this e�ect we carry out computations for a wide range of blockage (0:0056D=H6 0:125).
It is found that the blockage a�ects the critical parameters quite signi�cantly. While the
variation of Stc is monotonic with D=H , an interesting, non-monotonic behaviour of Rec with
D=H is observed. The in�uence of the location of the upstream and downstream boundaries
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of the computational domain has also been investigated. It is also useful to point out that
the range of blockage being considered in the present work is representative of the various
investigations carried out by di�erent researchers in the past to study unbounded �ow past a
cylinder. This, to our knowledge, is the �rst time a systematic study of this kind has been
undertaken. Some of the earlier studies like the ones by Chen et al. [13] and Sahin and
Owens [16] are for very high blockage ratios.
A stabilized �nite element formulation is used that allows one to employ equal-order-

interpolation functions for velocity and pressure. The SUPG (streamline-upwind=Petrov–Galerkin)
and PSPG (pressure-stabilizing=Petrov–Galerkin) stabilization technique [17] is employed to
stabilize the computations against spurious numerical oscillations. The formulation for the
linear stability analysis with the stabilized �nite element method, being used here, was pro-
posed in one of our earlier articles [18]. First, the steady-state solutions at various Re are
obtained by solving the governing equations by dropping the unsteady terms and progressively
increasing the Re. The linear stability analysis, of these steady states, involves the solution to
an eigenvalue problem. A sub-space iteration procedure [14] in conjunction with shift-invert
transformation is utilized.

2. THE GOVERNING EQUATIONS

2.1. The incompressible �ow equations

Let �⊂Rnsd and (0; T ) be the spatial and temporal domains, respectively, where nsd is the
number of space dimensions, and let � denote the boundary of �. The spatial and temporal
coordinates are denoted by x and t. The Navier–Stokes equations governing incompressible
�uid �ow are

�
(
@u
@t
+ u ·∇u − f

)
− ∇ · �= 0 on �× (0; T ) (1)

∇ · u=0 on �× (0; T ) (2)

Here �, u, f and � are the density, velocity, body force and the stress tensor, respectively.
The stress tensor is written as the sum of its isotropic and deviatoric parts:

�= − pI+ T; T=2�U(u); U(u)= 1
2 ((∇u) + (∇u)T) (3)

where p and � are the pressure and coe�cient of dynamic viscosity, respectively.

2.2. Problem set up and boundary conditions

The cylinder resides in a computational domain whose outer boundary is a rectangle. A
schematic of the problem set up is shown in Figure 1. The structure of the mesh is same
as used in our earlier studies [18]. A typical mesh is shown in Figure 2. For calculating the
steady-state �ow following boundary conditions are applied. Free-stream value is assigned
to the velocity at the upstream boundary. At the downstream boundary, a Neumann-type
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Figure 1. Uniform �ow past a cylinder: problem description.

Figure 2. Linear stability analysis of uniform �ow past a cylinder: a close-up view of the �nite element
mesh for H=D=8. The mesh consists of 17 310 nodes and 17 000 quadrilateral elements.

boundary condition for the velocity is speci�ed that corresponds to zero stress vector. On the
upper and lower boundaries a ‘slip-wall’ boundary condition is employed, i.e. the component
of velocity normal to and the component of stress vector along these boundaries are prescribed
a zero value. For the linear stability analysis, the boundary conditions are the homogeneous
versions of the ones used for determining the steady-state solutions.

2.3. Equations for the linear stability analysis of the �ow

To conduct a global, linear stability analysis of a non-parallel �ow the unsteady solution is
expressed as a combination of the steady solution and the disturbance:

u=U+ u′; p=P + p′ (4)

Here, U and P represent the steady-state solution whose stability is to be determined while
u′ and p′ are the perturbation �elds of the velocity and pressure, respectively. Substituting
Equation (4) in Equations (1)–(2) and subtracting from them, the equations for steady �ow,
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one obtains:

�
(
@u′

@t
+ u′ ·∇U+U ·∇u′

)
− ∇ · �′= 0 on �× (0; T ) (5)

∇ · u′=0 on �× (0; T ) (6)

Here, �′ is the stress tensor for the perturbed solution computed using Equation (3). We
further assume that the disturbances are small and of the following form:

u′(x; t) = û(x)e�t (7)

p′(x; t) = p̂(x)e�t (8)

Substituting Equations (7)–(8) in Equations (5)–(6) we get

�(�û+ û ·∇U+U ·∇û)− ∇ · �̂= 0 on � (9)

∇ · û=0 on � (10)

Here, � is the eigenvalue of the �uid system and governs its stability. In general, �= �r + i�i
where, �r and �i are the real and imaginary parts, respectively. The boundary conditions for
û and p̂ are the homogeneous versions of the ones for U and P as shown in Figure 1.

3. THE FINITE ELEMENT FORMULATION

Consider a �nite element discretization of � into subdomains �e, e=1; 2; : : : ; nel, where nel
is the number of elements. Based on this discretization, for velocity and pressure perturbation
�elds we de�ne the �nite element trial function spaces Ŝh

u and Ŝh
p , and weighting function

spaces V̂h
u and V̂h

p . These function spaces are selected, by taking the Dirichlet boundary
conditions into account, as subsets of [H1h(�)]2 and H1h(�), where H1h(�) is the �nite-
dimensional function space over �. The application of the stabilized �nite element method
to the perturbation equations, (9) and (10), result in the following formulation: �nd ûh ∈ Ŝh

u
and p̂h ∈ Ŝh

p such that ∀ŵh ∈ V̂h
u and q̂h ∈ V̂h

p :
∫
�
ŵh ·�(�ûh +Uh ·∇ûh + ûh ·∇Uh) d� +

∫
�
Û(ŵh) : �̂(p̂h; ûh) d�

+
∫
�
q̂h∇ · ûh d� +

nel∑
e=1

∫
�e

1
�
(�SUPG�Uh ·∇ŵh + �PSPG∇q̂h)

· [�(�ûh +Uh ·∇ûh + ûh ·∇Uh)− ∇ · �̂(p̂h; ûh)] d�e

+
nel∑
e=1

∫
�e
�LSIC∇ · ŵh�∇ · ûh d�e=0 (11)
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In the variational formulation given by Equation (11), the �rst three terms constitute the
Galerkin formulation of the problem. It is well known that the Galerkin formulation is unstable
with respect to the advection operator as the cell Reynolds number (based on the local �ow
velocity and mesh size) becomes large. Also, not all combinations of velocity and pressure
interpolations are admissible in the Galerkin formulation. Elements that do not satisfy the
Babuska-Brezzi condition lead to oscillatory solutions and, sometimes, no solution at all. To
give stability to the basic formulation, a series of element-level integrals are added. The �rst
series of element-level integrals are the SUPG and PSPG stabilization terms added to the
variational formulations [17]. The SUPG formulation for convection dominated �ows was
introduced by Hughes and Brooks [19] and Brooks and Hughes [20]. The Petrov–Galerkin
term for Stokes �ows, to admit the use of equal-order interpolations for velocity and pressure
without producing oscillations in the pressure �eld, was proposed by Hughes et al. [21].
Tezduyar et al. [17] proposed a formulation using the SUPG and PSPG stabilizations for �nite
Reynolds number �ows. The second series of element level integrals are stabilization terms
based on the least squares of the divergence-free condition on the velocity �eld. Presently,
same de�nition for �PSPG and �SUPG is being used. It is given by the following relation based
on its values for the advection and di�usion limits:

�SUPG = �PSPG =
(
1
�2ADV

+
1
�2DIF

)−1=2
(12)

where

�ADV =
he

2‖Uh‖ ; �DIF =
(he)2

12�
(13)

Here, he is the element length and various de�nitions have been used by researchers in
the past. Mittal [22] conducted a systematic numerical study to investigate the e�ect of high
aspect ratio elements on the performance of the �nite element formulation for three commonly
used de�nitions of he. In this work we use the de�nition based on the minimum edge length
of an element. The coe�cient �LSIC is de�ned as

�LSIC =
(

1
�2ADV

+
1
�2DIF

)−1=2
(14)

where

�ADV =
he‖Uh‖
2

; �DIF =
(he)2(‖Uh‖)2

12�
(15)

For a description of alternative de�nitions of the stabilization coe�cients the interested reader
may refer to the article by Tezduyar [23].

4. THE EIGENVALUE PROBLEM

Equation (11) leads to a generalized eigenvalue problem of the form AX − �BX =0, where
A and B are nonsymmetric matrices. Various algorithms have been developed, in the past,
to solve such eigenvalue problems with large sparse nonsymmetric matrices. For example,
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some of the methods are the inverse iteration [24], subspace=simultaneous iteration [25] and
Lanczos method [26]. In the present case, the situation is complicated by the fact that the
continuity equation, which is responsible for determining the pressure, causes the matrix B to
become singular. Fortunately, in the context of linear stability analysis, we only need to track
the leading=rightmost eigenvalue (the eigenvalue with the largest real part). In this study we
use the shift-invert transformation in conjunction with the subspace iteration method [27].
The �ow past a cylinder is known to undergo a Hopf bifurcation. The steady-state solution

loses its stability such that the eigenvalue giving rise to the loss of stability (the rightmost
eigenvalue) crosses the imaginary axis with a �nite imaginary part. This marks the transition
of the stationary �ow to a periodic �ow. The imaginary part of the unstable eigenvalue gives
the angular frequency corresponding to that particular mode. The non-linear terms in the
Navier–Stokes equation becomes important as the unstable solution grows. Eventually, the �ow
achieves a limit-cycle. Therefore, the linear stability analysis can, at best, predict the onset of
instability.

5. RESULTS

5.1. E�ect of blockage

To investigate the e�ect of blockage, computations with various values of domain size (H=D)
are carried out. The location of the upstream and downstream boundaries are each �xed at
50D, from the centre of the cylinder. The �nite element meshes for various H=D are generated
so that the spatial resolution is same, as far as possible, in all the cases. We refer to this
family of meshes by R2. For example, the mesh with H=D=100 consists of 28 170 nodes
and 27 800 quadrilateral elements while the one with H=D=20 has 20 206 nodes and 19 880
elements. A close-up view of a typical mesh, for H=D=8 is shown in Figure 2.
Figure 3 shows the variation of the critical parameters with the domain size. A curve �t to

the data for various blockage is computed to estimate the Rec and Stc values for the in�nite
domain. The curve �ts for the data are given as

Rec = 47:3804− 4:70659=
√
B+ 124:836=B− 1228:84=

√
B3 + 4334:98=B2 − 4947=

√
B5 (16)

Stc = 0:116311 + 0:0403825B+ 1:81145B2 − 3:97608B3 (17)

where B=D=H is the blockage. It is seen that the values of Rec and Stc predicted for the
in�nite domain case are 47:380 and 0:1163, respectively. As the blockage increases, �rst Rec
decreases and then it increases. Such a non-monotonic variation of Rec for this range of
blockage has not been reported earlier. The vortex shedding frequency, at the onset of the
instability, is also found to be quite sensitive to blockage. A monotonic increase in Stc with
increase in blockage is observed. Behr et al. [28] conducted a numerical investigation for
the Re=100 �ow past a cylinder to study the sensitivity of �ow parameters to H=D. They
observed the same trend as in the present study that Stc decreases with increase in H=D. In
general, as compared to Rec, Stc is more sensitive to blockage. For example, for a mesh with
H=D=9, compared to the value for in�nite domain, ∼ 18:4% higher value of Stc is predicted.
On the contrary, the error in Rec is less than 1%.
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Figure 3. Linear stability analysis of uniform �ow past a cylinder with meshes of di�erent
spatial resolution: e�ect of the lateral width of the domain (H=D) on Stc (above) and
Rec (below). In all the cases the upstream and downstream boundaries are located at

50D, each, from the centre of the cylinder.
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5.2. Convergence: adequacy of the spatial resolution

We now investigate the adequacy of the meshes of the family R2 in computing these �ows.
A convergence study with four di�erent families of meshes of increasing spatial resolution,
represented by R1, R2, R3 and R4, is carried out for di�erent values of H=D. R1 represents
the family of coarsest meshes while R4 is the collection of meshes with maximum resolution.
For all the cases, the upstream and downstream boundaries, are each located at 50D, from
the centre of the cylinder. For example, the mesh with H=D=40 belonging to R1 family
consists of 20 800 quadrilateral elements. The corresponding numbers for the R2, R3 and R4
meshes are 22 400, 25 600 and 30 400, respectively. Figure 3 shows the variation of the critical
parameters with the lateral domain size, computed with meshes of various spatial resolution.
Excellent agreement is seen between the results from di�erent grids to the extent that the data
points are virtually indistinguishable from each other. This, therefore, establishes the adequacy
of all the meshes, and in particular the family R2, in resolving these �ows.

5.3. E�ect of upstream and downstream location of the boundaries of computational
domain

We would now like to �nd out if the location of the upstream and downstream boundaries
also a�ect the critical parameters at the onset of the wake instability. To investigate this e�ect
the lateral dimension of the domain is �xed to H=D=16. Computations are carried out for
di�erent values of the upstream (Lu) and downstream (Ld) location of the boundaries of the
computational domain. The results from the study are shown in Table II. It is observed that
while the location of the inlet and out�ow boundaries have some e�ect on Rec, the Stc is
virtually una�ected. Another interesting observation that can be made from Tables I and II
is the comparison between the predictions from the work of Ding and Kawahara [11] and
the present computations. When we use the same domain size as the one used by Ding and
Kawahara [11] (L×H =36D× 16D) our results are in excellent agreement with theirs, despite
the di�erences in the two formulations. Overall, it appears that Stc is fairly independent of the
streamwise size of the computational domain. On the other hand, the critical Re does show
some dependence on the streamwise length of the domain.
A logical question that comes up is: what is the e�ect of blockage on the critical parameters

for truncated streamwise domain sizes? Does Rec still show a non-monotonic variation with
H=D? Di�erent values of the streamwise length of the domain have been employed by di�erent

Table II. E�ect of upstream and downstream boundary loca-
tion on the Rec and Stc for H=D=16.

Lu Ld Rec Stc

8 28 46.384 0.126
16 28 46.735 0.125
50 50 46.908 0.125

Lu and Ld indicate the upstream and downstream boundary lo-
cation respectively from the centre of the cylinder in terms of
the diameter of the cylinder.
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researchers in the past. For example, the distance of the downstream boundary from the
cylinder is 15D, each, in the computations by Morzynski et al. [14] and Jackson [9] while
it is 28D for the grid used by Ding and Kawahara [11]. To compare our results with
those from previous studies we carry out computations with approximately the same do-
main size as used by others. To this extent, the size of the computational domain is chosen
such that for H=D6 13, the upstream and downstream boundaries are located at 10D, each,
from the cylinder. For larger H=D, the streamwise location of the two boundaries is 20D
and 50D, respectively. The meshes associated with these domains with smaller streamwise
length are collectively referred to as M . The results from the computations are shown in
the Figure 4.
The non-monotonic variation of Rec with H=D and monotonic decrease in Stc with H=D

is observed for the all the locations of upstream and downstream boundaries that we have
studied. While the e�ect of the streamwise extent of the domain on Stc is insigni�cant, it is
clear from the computations that, the non-monotonic variation of Rec with H=D is ampli�ed for
shorter streamwise length of the domain. Compared to the larger domain, the minimum value
of Rec decreases from 46:898 to 46:392 and the lateral width, H=D, at which the minimum
occurs decreases from 18 to 13. The curve �ts for the variation of the critical parameters with
the blockage (B=D=H) using mesh M are: Rec = 47:5548−23:5598B+21:821B2+1175:91B3,
and Stc = 0:115784 + 0:102434B+ 0:86421B2.

5.4. The scatter of data from various computational investigations

Listed in Table I are the values reported by various researchers for the critical parameters. A
relatively large scatter in the data, especially for Stc for the computational studies, is observed.
The computational method used and domain size are also listed. It is seen from Figures 3
and 4 that the critical parameters vary signi�cantly with the blockage. We have seen, earlier
in the paper, that the location of the upstream and downstream boundaries have some e�ect
on the Rec but Stc is largely una�ected. We now attempt to examine the scatter in the data
reported by various computational studies in the context of the location of boundaries of the
computational domain.
Shown in Figure 4 are the critical parameters for various values of blockage (for two

sizes of the domain in the stream-wise direction) along with the results reported by other
researchers. The data for Stc from other studies is in excellent agreement with the present
results. Therefore, it can be concluded that the scatter in the data for Stc from various studies
can be attributed to the blockage e�ects. The scatter in the Rec seems to depend on, both, the
blockage as well as the streamwise extent of the domain. It is seen from Figure 4 that the
results from the present computations for the domain with shorter streamwise length are in
fairly good agreement with the data for Rec from other studies. Of course, the spatial resolution
of the computations and the numerical accuracy of the algorithm employed are also important.
The results from Jackson [9] have been computed using a �nite element method with two sets
of meshes. The coarse mesh with 3056 nodes results in Rec = 45:403 and Stc = 0:13626 while
the values with the mesh with 12 000 nodes are Rec = 46:136 and Stc = 0:13793. For practical
reasons, they were unable to use grids with signi�cantly �ner resolution. The values listed in
Table I (and shown in Figure 4) are the estimated converged values based on the accuracy
properties of their element types. It is our belief that further increase in spatial resolution will
move the results from Jackson [9] closer to our computational curve shown in Figure 4. In
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,

Figure 4. Linear stability analysis of uniform �ow past a cylinder: comparison of Stc (above) and Rec
(below) with results from other studies. The results for the large domain are for Lu =Ld = 50D. The

smaller domain refers to a domain of shorter length in the streamwise direction.
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fact, the data from Morzynski et al. [14], for the same domain size, agrees quite well with
the present computations.
Another important point that can be noted is that because of the non-monotonic variation

of Rec with H=D, it is possible to predict the correct Rec, for unbounded �ow, by choosing
an appropriate value of blockage. For example, from the curve �t given above, it is seen
that H=D=7:6 results in Rec ∼ 47:5. However, such computations overpredict the value of Stc
by ∼ 25%. For H=D=10, the domain size used by Morzynski et al. [14] and Jackson [9],
the curve �t predicts Stc = 0:1347. This is quite close to the values reported by Morzynski
et al. [14] and Jackson [9] as shown in Table I. Similarly, for H=D=16, the value predicted
by the curve �t, for Stc, is 0:1256 which is again very close to the value reported by Ding
and Kawahara [11].

5.5. The eigenmodes at the onset of instability

The real and imaginary parts of the unstable eigenmodes of the computed vorticity �elds for
Re just after the onset of instability are shown in Figure 5. It is clear from the picture that the
vorticity �eld for the steady �ow is antisymmetric, about the x-axis, while the perturbations

Figure 5. Vorticity �eld for Re=47:4 �ow past a cylinder: (top to bottom) the steady-state
solution, real and imaginary parts of the most unstable eigenmode and a linear combina-
tion of the steady-state solution and the most unstable eigenmode. The solutions are with
H=D=100 and the mesh is from the R2 family. The broken lines denote negative while

the solid lines represent positive value of the vorticity.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:987–1001



EFFECT OF BLOCKAGE ON CRITICAL PARAMETERS 999

Figure 6. Comparison of the most unstable eigenmodes for the vertical component of velocity at Rec for
meshes with H=D=100 (top) and H=D=8 (bottom) from R2 family. The broken lines denote negative

while the solid lines represent positive value of the vertical velocity.

are symmetric. These pictures are for Re=47:4 computed with a mesh corresponding to
H=D=100 from R2 family. They are very similar to the ones from Ding and Kawahara [11].
The appearance of the symmetric perturbations to the antisymmetric base �ow and vice versa
is the cause of symmetry breaking bifurcation. A combination of the steady �ow and the
eigenmodes is also shown in Figure 5 to reproduce the asymmetric �ow �eld at the onset of
instability.

5.6. A possible explanation of the non-monotonic behaviour of the Rec with blockage

We propose a possible explanation for the non-monotonic behaviour of the Rec with blockage.
As the blockage increases the local acceleration of the �ow near the cylinder causes it to
experience a virtually higher Re �ow. Therefore, the critical Re, at which the �ow becomes
unstable, decreases. However, beyond a certain point (H=D6 18 with mesh R2), when the
blockage is increased further, the boundary condition corresponding to no normal �ow across
the wall at the lateral boundaries damps the perturbations. This causes the Rec to increase with
blockage. Figure 6 shows the most unstable eigenmodes for the vertical component of velocity
at an Re close to the onset of instability computed with two di�erent locations of the lateral
boundaries (H=D=100 and 8 from R2 family). It can be observed that, for the case with the
narrower domain, the lateral boundaries seem to inhibit the growth of the perturbations.

6. CONCLUSIONS

The e�ect of location of lateral boundaries on estimating the critical parameters for unbounded
�ow past a circular cylinder have been examined by utilizing a wide range of blockage. A non-
monotonic variation of Rec with blockage is observed and a possible explanation is suggested.
The blockage e�ects are negligible when the lateral boundaries are located more than 100D
from the cylinder. As the lateral boundaries are brought inwards, the local �ow accelerates
resulting in a virtually higher Re �ow and thereby, lowering the Rec value. However, further
increase in blockage inhibits the growth of perturbations leading to an increase in Rec. The
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non-dimensional vortex shedding frequency at the onset of the instability is found to be very
sensitive to the blockage. It increases rapidly with increase in blockage, especially for high
blockage. The study is utilized to explain the large scatter in the Stc values reported by various
researchers in the past. The Rec is a�ected by, both, the lateral as well as the streamwise
extent of the domain.
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